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ABSTRACT

A Late-glacial to early Holocene record of pollen, plant macrofossils and

charcoal, based on two cores, is presented for Browns Pond in the central

Appalachians of Virginia. An AMS radiocarbon chronology defines the timing of

moist and cold excursions, superimposed upon the overall warming trend from

14,200 to 7,500 14C yr B.P. This site shows cold, moist conditions from approximately

14,200 to 12,700 14C yr B.P., with warming at 12,730, 11,280 and 10,050 14(2 yr B.P. A

decrease in deciduous broad-leaved tree taxa and Pinus strobus (haploxylon) pollen,

simultaneous with a re-expansion of Abies denotes a brief, cold reversal from 12,260

to 12,200 14C yr B.P. A second cold reversal, inferred from increases in montane

conifers, is centered at 7500 14C yr B.P. The cold reversals at Browns Pond may be

synchronous with climate change in Greenland, and northwestern Europe.

Warming at 11,280 14C yr B.P. shows the complexity of regional climate responses

during the Younger Dryas chronozone.
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INTRODUCTION

Are the late-glacial climate oscillations that have been extensively

documented in pollen records from western and northern Europe eviderit in

eastern North America? Recent pollen records from Atlantic Canada (Mayle et al.,

1993), the northeastern U.S. (Peteet et al., 1990; Peteet et al., 1993; Maenza-Gmelch,

1997a; Maenza-Gmelch, 1997b), and the U.S. midwest (Shane, 1987; Shane and

Anderson, 1993), are interpreted as showing cold reversals that are synchronous

with the European Younger Dryas chronozone (sensu Mangerud et al., 1974). In

addition, temperature estimates based on chironomid assemblages show cooling

events of just 250 years duration that are recorded in Maritime Canada, called the

Killarney Oscillation, (Levesque et al., 1993) and Maine (Cwynar and Levesque,

1995). Therefore, evidence is accumulating that cold reversals interrupted the

deglacial warming trend in eastern North America.

South of these glaciated regions, late-glacial cool or moist periods have been

recognized in pollen records from Kentucky to Florida (Watts, 1980; Watts and

Hansen, 1988; Wilkins et aI., 1991; Watts et aI., 1992). Reviews of southeastern

pollen records and climatic interpretations have been written by Delcourt and

Delcourt (1984; 1985) Overpeck et al. (1989), Watts (1983), and Watts and Hansen

(1994). However, the duration of these cool and moist periods, and their possible

connection to climate changes in the northern North Atlantic Basin, have not been

firmly established.

Identifying climate reversals on the order of 100 to 1000 years in existing

unglaciated eastern U.S. records is difficult: slow sedimentation rates combined

with few radiocarbon dates make it difficult to resolve events of this time scale. We

examined cores from a central Appalachians pond where accumulation rates

averaged 70 cm per 1000 14C yr from 14,000 to 10,000 14C yr B.P. The pollen and
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abundant macrofossils, combined with AMS radiocarbon dating, have produced a

detailed record of late-glacial to early Holocene vegetation change at this site.

METHODS

Browns Pond is a 60 by 20 meter basin, with no inlets, in the central

Appalachians of Virginia, U.S.A. at 38°09'17"N, 79°36'59"W, and 620 m elevation.

Water depth is approximately 20 cm. The underlying bedrock is upper-Silurian age

limestone, sandstone and shale (Bick, 1962). Despite the karst topography, at this site

the colluvium is sandstone-rich and soils are acidic (T. Rawinski, personal

communication, 1991). The closest weather station, in Hot Springs, Virginia

(38°00'N, 79°50'W, 682 m) has an annual average temperature of 10.8°C and 1060

mm of precipitation (NOAA, 1983). The pond is covered with Dulichium

arundinaceum (three-way sedge). The site is in the Ridge and Valley section of the

Oak-Chestnut Forest region described by Braun (1950) and the trees immediately

surrounding the site are typical of this region: Quercus alba and Q. rubra

predominate. A more detailed description of the site and vegetation can be found in

Kneller and Peteet (1993).

Previously six cores were retrieved in a partial transect across the pond. The

identification of pollen and plant macrofossils was concentrated on the central and

longest core (named BR89) which dated to 17,130 14C yr B.P. at 400-cm depth, and

reached a total depth of 697 cm depth (lower meters are inorganic clay) (Kneller and

Peteet, 1993). All core depths are relative to the sediment-water interface. The

primary results from the previous paper were: 1) a boreal-type forest consisting of

Picea, Abies, and Pinus grew at the site at 17,300 14C yr B.P. and slight increases in

more thermophilous and mesophytic taxa occurred after 17,000 14C yr B.P.; 2) a

marked increase in Alnus at 14,100 14C yr B.P. signaled an increase in moisture.

Core BR89 had slow sedimentation rates and poor preservation between

approximately 13,000 and 8000 14C yr B.P. In order to determine the vegetation



changes occurring during this time interval, we analyzed more samples from

transect core BR91 since it had better preservation during the late-glacial to

Holocene transition (BR91is referred to as BRW1 in Kneller and Peteet (1993) and

due to coring difficulties was only 228 cm in length). We also retrieved new cores

from Browns Pond and concentrated our analyses on the core with the most

complete recovery, here called BR92. All coreswere retrieved with a 5 cm diameter

modified Livingstone piston corer (Wright et al., 1984). Since the sediments were

very consolidated, drives are less than 1 m in length.

We present new results from cores BR91 (228 cm deep) and BR92 (512 cm

deep) which are approximately 22 and 18 m east of BR89, respectively. Most pollen

and macrofossil identifications were conducted on BR92 since it was the longest core

(Figures 1 and 2). At the top of the third drive, a gap exists from 174.5 to 186 cm

depth (below the sediment surface). Hence core BR91 was examined in detail from

170 to 225 cm depth in order to confirm the stratigraphy (Figures 3 and 4).

Pollen processing followed Faegri and Iverson (1975) with the modifications

of Heusser and Stock (1984). A known quantity of Lycopodium spores was added in

order to calculate pollen accumulation rates (PAR) or pollen influx (Figure 5),

(Stockmarr, 1971). Plant macrofossils were identified in sediments that were

prepared according to Watts and Winter (1966) and Peteet (1986). A half-core was

cleaned on the outer surface and then cut into segments at intervals of 1 to 2 cm.

The screen sizes used to separate macrofosssils from sediment were 120 and 500

microns. A volumetric estimate of charcoal content was made on the sediment

fraction > 500 microns.

Pollen classification follows McAndrews et al. (1988) and Faegri et al. (1989).

Alnus rugosa and A. crispa types were distinguished according to Watts (1979).

Morphological criteria do exist to distinguish the pollen of three species of Picea

presently found in eastern North America (Birks and Peglar, 1980; Hansen and
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Engstrom, 1985). However, the relevance of these criteria to Picea pollen from the

southern Appalachians needs further evaluation (B. Hansen, personal

communication, 1992) and hence Picea pollen identification remains at the genus

level. The CONISS program for stratigraphically constrained cluster analysis (square

root transformation) was applied to the upland pollen taxa in order to help define

the local pollen assemblage zones (Grimm, 1987). Plant macrofossils were identified

with the aid of Martin and Barkley (1961), Montgomery (1977), and L6vesque et aI.

(1988) and by comparison to the reference collection at Lamont-Doherty Earth

Observatory. Nomenclature follows Fernald (1970) except where noted otherwise.

AMS radiocarbon dated samples were identified macrofossils from trees or

emergent aquatics; sediment was used when no macrofossils were available (Table

1). Previously, dates on macrofossils and bulk sediment from the same depths

showed virtually no offset (Kneller and Peteet, 1993). AMS radiocarbon analyses

were conducted by the Center for Accelerator Mass Spectrometry, Lawrence

Livermore National Laboratory, California and the National Science Foundation

Arizona AMS Facility. CALIB version 3.0.3c (Stuiver and Reimer, 1993) was used to

derive the calibrated sidereal years (cal yr B.P., Table 1). The age model for Browns

Pond is a straight-line interpolation between radiocarbon dates (see the plot of

Deposition Time in Figure 5).

RESULTS and INTERPRETATION

Pollen and Plant Macrofossils

The radiocarbon dates for cores BR92 and BR91 are generally in chronological

order (Table 1). The three nearly synchonous 10,000 14C yr B.P. dates, separated by 23

cm, in core BR91 may indicate either rapid sedimentation rates, or be an expression

of the radiocarbon age plateau identified at approximately 10,000 14C yr B.P. (Andre6

et al., 1986; Ammann and Lotter, 1989; Kromer and Becker, 1993). Without an

independent age model, a plateau cannot be confirmed.
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The pollen and plant macrofossil assemblages are interpreted in light of

existing phytosociological studies that show tree distribution along elevational

gradients in the Appalachians. Nearly pure fir (Abies fraseri or A. balsamea) stands

characterize the highest elevation forests in much of the southern and northern

Appalachians. Abies shows the greatest tolerance to cold; Picea usually is more

abundant at elevations below Abies (Oosting and Billings, 1951; McIntosh and

Hurley, 1964; Siccama, 1974; Reiners and Lang, 1979; Cogbill and White, 1991). In the

Appalachian montane spruce-fir forest, unlike the North American boreal forest,

Picea rubens is the dominant spruce species below approximately 47°40'N latitude,

not Picea glauca or Picea mariana (Little, 1971; Cogbill and White, 1991). The Picea-

and Abies-dominated stands grade into lower-elevation stands containing

deciduous trees. Betula is the one deciduous tree that is consistently found in many

of the high-elevations forests, although the species may vary (e.g.B. lutea, B.

papyrifera, B. papyrifera var. cordifolia and B. lenta). Fagus grandifolia, Acer

saccharum and Acer rubrum, Fraxinus americana, Tilia heterophylla and Tilia

americana, Quercus rubra, and the conifer Tsuga canadensis are frequent

components of mid-elevation forests.

Alternatively, the taxa could be interpreted in light of their continental

distribution, especially with reference to their high-latitude distribution. The

elevation-analogy is used here because the plant associations interpreted from the

fossil record, between 12,700and 7500 14C yr B.P., are very similar to associations

found in the modern phytogeographic studies from the Appalachians. There are

floristic differences between the high-elevation montane spruce-fir forest, and the

high latitude or boreal forest. Many high-latitude taxa have their southernmost

appearance in the central Appalachians (Gleason and Cronquist, 1991). We have not

yet identified taxa, in the Browns Pond sediments, that are unequivocally boreal

rather than montane. A major climatic difference is that the Appalachians at high-

7



elevations receive more precipitation than the high latitudes (Oosting and Billings,

1951).

Zone BRI: Picea-Abies zone (> 14,180 14C yr B.P.; BR92, 445 to _> 485 cm). This

zone is similar to the Pinus-Picea-Abies zone dating from 17,345 to 14,090 14C yr B.P.

in core BR89 (Kneller and Peteet, 1993). One dissimiliarity is that in core BR92, the

percentages of Picea pollen (from 42 to 46%) are greater than Pinus pollen (from 29

to 38%) whereas in BR89 Pinus exceeds Picea pollen percentages. In both cores, the

arboreal macrofossils are mostly Picea needles.

Zone BR2: Alnus-Picea-Abies zone (14,180 to 12,730 14C yr B.P.; 17,000 to

15,000 cal yr B.P.; BR92, 445 to 346 cm). This zone is defined by significant amounts

of Alnus rugosa-type pollen, which reaches a maximum of 26%. It correlates with

the Alnus-Pinus-Picea-Abies zone in core BR89 dating from 14,090 to 12,810 14C yr

B.P. (in which Alnus rugosa-type pollen ranged from 30 to 59% (Kneller and Peteet,

1993)). Picea, Pinus and Abies reach maximum percentages of 32, 26, and 5.6

respectively. Quercus (3.0%) and Betula (2.6%) have the highest percentages of the

deciduous-tree taxa. The herbaceous assemblage comprises a range of plants

including Gramineae, Cyperaceae, Tubuliflorae, other Compositae, and Nuphar.

Total upland pollen influx ranges from 1400 to 6000 grains cm -2 yr -q.

Macrofossil preservation is excellent. Picea needles and seeds are the most

abundant macrofossils, followed by Abies needles, and Alnus seeds and cone bracts.

A few Larix seeds, fragments of 2 per fascicle Pinus needles, and Pinus seed cone

scales were found. The Pinus specie(s) could not be identified since the needle

fragments are small and the cone scales lack bracts, which can be help identify

species. A single Betula seed, populifolia type (Cunningham, 1957), was identified at

365 cm. Seeds of the shrubs Sambucus canadensis and Rubus sp., and herbs

including Hypericum virginicum var. Fraseri, Viola cf. lanceolata and Menyanthes

trifoliata are present. Isoetes melanopoda megaspores and microspores are
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abundant. This is an amphibious speciesfound in springtime saturated and

summer dry conditions (Fernald, 1970;Boom, 1982). Aquatic seeds are common and

include Nuphar, two species of Potamogeton, and Najas .flexilis. Charcoal

concentrations ranges from 0 to 1.2 mm 3 per ml of sediment.

A montane spruce-fir forest, established by 14,180 14C yr B.P. is indicated by

the significant percentages of pollen from Picea and Abies, and their abundant seeds

and/or needles. Alder likely grew in moist soil near the pond. The array of arboreal

and shrub macrofossils suggests a densely covered, mesophytic landscape

surrounding a pond. The water depth was deeper than today, based on the presence

of Nuphar and Potamogeton. Water-levels were lower in summer than in spring,

based on the presence of I. melanopoda.

The transition between pollen zones BR2 and BR3a is placed at 346 cm depth,

between pollen samples at 343.5 and 348.5 cm depth, even though the CONISS

analysis shows a distinct division between pollen samples at 348.5 and 361.5 cm

depth. Our zone division is based upon increases in percentage, concentration and

influx of Quercus, Ostrya/Carpinus, and Fagus, that are evident in the samples

starting at 343.5 cm depth (Figures 1, 5 and (Kneller, 1996)).

Zone BR3a: Picea-Abies-Ostrya/Carpinus-Quercus zone (12,730 to 12,260 14C

yr B.P.; 15,000 to 14,320 cal yr B.P.; BR92, 346 to 266 cm). This zone is delineated by

increases in some broad-leaved deciduous-tree pollen taxa. Quercus,

Ostrya/Carpinus, Fagus and ]uglans reach maximum pollen percentages of 13.6, 3.8,

1.9 and 0.6 respectively, levels which likely show the taxon's presence (Davis and

Webb, 1975; Delcourt et al., 1984). Picea, Pinus and Abies remain significant

components of the pollen assemblage. Nuphar pollen percentages increase while I.

rnelanopoda microspores are absent. Other aquatics include Typha/Sparganium,

Menyanthes and Sagittaria.
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Pollen influx rises, and ranges from 5900to 22,000grains cm-2 yr-q. The

influx increase is apparent in many taxa. The influx increasemight be partly caused

by increased slope inwash, or sediment focusing, since it coincides with higher

sedimentation rates. However, while total pollen concentration is approximately

constant across the zone BR2-BR3aboundary, the concentration of the different tree

taxa varies. Pollen concentrations of Ostrya/Carpinus increase by roughly ten-fold at

zone BR3a's lower boundary, Quercus increases by about four-fold, Picea and Abies

by roughly two-fold, and Pinus shows little change in concentration (Kneller, 1996).

Maximum influx values for Ostrya/Carpinus are in this zone. Thus a real increase

in numbers of deciduous trees, especially Ostrya/Carpinus and Quercus, likely

occurred at 12,730 14C yr B.P.

Arboreal macrofossils preserved include Pinus strobus needles, 2 per fascicle

Pinus needles, and seeds and/or needles of Picea, Abies and Larix. Alnus seeds

decrease within this zone. A single Acer spicatum seed occurs at 343 cm. Seeds of

several herbaceous plants become abundant: Verbena cf. hastata, Carex stipata,

Scirpus polyphyllus type, S. atrovirens type and Sagittaria cf. rigida. Aquatics

include Nymphaeaceaeseeds, along with scattered occurrences of Potamogeton

spirillus-type and P. foliosus-type seeds. Charcoal concentration is from 0 to 0.75

mm 3 per ml of sediment.

A step towards warmer temperatures at 12,730 14C yr B.P. is inferred from the

increases in Quercus, Ostrya/Carpinus, Fagus and Juglans pollen, and decreases in

the seeds of Menyanthes trifoliata (a circumboreal aquatic). The array of conifer and

deciduous taxa suggests a region like the transition from the subalpine conifer zone

to the northern hardwoods-yellow birch-mesophytic forest zone found in the

Balsam Mountains of Virginia (Rheinhardt and Ware, 1984): cooler and moister

than present. The marsh and aquatic taxa are typical of temperate eastern North
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American ponds. Nuphar seeds and pollen indicate water levels deeper than

present.

Two small but distinct peaks in Tsuga pollen (in percentage and influx) are

evident from 287 to 282 cm (two pollen samples of 9 to 12%) and at 267.5 cm (one

sample of 3.7%). The first two occurrences of Tsuga needles are at 282 and 267 cm

depth, additional evidence that the Tsuga population increased at this site. The

Tsuga peaks are also concurrent with increases in Pinus haploxylon-type pollen and

Dryopteris-type spores, and decreases in Picea and Abies. Tsuga and Pinus strobus

are species found at elevations lower than Abies and Picea in the Appalachians.

These changes may be caused by warming temperatures, although replication in

other cores from this site and neighboring sites is needed prior to interpreting a

regional event.

Zone BR3b: Abies-Picea-diploxylon Pinus zone (12,260 to 12,200 14C yr B.P.;

14,320 to 14,240 cal yr B.P.; BR92, 266 to 245 cm). Percentages and influx of Abies

pollen increases. Many of the deciduous-tree taxa decrease (Ulmus,

Ostrya/Carpinus, Quercus, ]uglans cinerea and Fagus grandifolia, but neither

Fraxinus nor Betula). The pollen percentages of these deciduous-tree taxa are

similar to their zone BR2 values. Tsuga pollen and macrofossils are absent. Pinus

diploxylon-type pollen increases, Picea pollen influx increases. The pollen

percentages of Sanguisorba canadensis increase while Typha/Sparganium decrease.

Total pollen influx ranges from 4200 to 22,000 grains cm -2 yr -1.

Seeds from some shallow water, temperate species which were abundant in

zone BR3a, are now absent. Carex stipata, Scirpus polyphyllus type and S. atrovirens

type are now absent along with the herb Verbena cf. hastata. Definitive

identification of these species is needed in order to interpret the environmental

change. Menyanthes trifoliata seeds are present. Charcoal concentration ranges

from 0 to 0.8 mm 3 per ml of sediment.
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A reversal toward colder temperatures explains the rise in percentage and

influx of Abies pollen, decreases in Pinus haploxylon-type pollen and Pinus strobus

needles, and decreases in percentage and influx of the deciduous-tree taxa pollen.

Other taxa showing increases in pollen influx--Picea, Pinus diploxylon-type pollen,

and Sanguisorba canadensis--are cold tolerant plants. M. trifoliata's presence shows

the pond had shallow water areas.

Zone BR3c: Picea-Abies-Ostrya/Carpinus-Quercus zone (12,200 to 11,280 14C

yr B.P.; 14,240 to 13,260 cal yr B.P.; BR92, 245 to 195 cm). The pollen and macrofossil

assemblage is very similar to zone BR3a except Abies macrofossils are absent, and

Tsuga needles more abundant in BR3c. Total pollen influx ranges from 2200 to 6500

grains cm -2 yr -1. Pollen from Lycopodium annotinum and Menyanthes trifoliata,

circumboreal species, and Sanguisorba canadensis are last seen here.

Temperatures warm and return to climate conditions like those from 12,730

to 12,260 14C yr B.P. (zone BR3a). Two more small Tsuga-Pinus haploxylon-type

pollen, and Tsuga macrofossil peaks (at 238 cm and 216 cm) could be related to

warming. This interpretation must be substantiated at additional sites.

At this point, the assemblages from both cores BR91 and BR92 are used to

define the pollen zones. Pollen influx curves, and the CONISS results on core BR91

where our sampling resolution was higher, were all evaluated when making the

divisions between zones BR3c, BR4, and BR5. Where the two cores overlap

chronologically, the pollen and macrofossil assemblages are similar in composition

although differences exist in the exact percentage of any taxon counted, and the exact

stratigraphic placement of fluctuations of one taxon relative to another. The

differences could be due to factors affecting pollen accumulation within the basin

(Davis et al., 1984). Also, a core's proximity to the shoreline (itself a fluctuating

feature over time) might register different ratios of the shore and shallow-water
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plants, especially if the pollen was not well-mixed throughout the basin prior to

deposition.

Zone BR4: Tsuga-Betula-Pinus strobus-zone (11,280 to 10,050 14C yr B.P.;

13,260 to approximately 10,940 cal yr B.P.; BR92, 195 to 173 cm; BR91, > 225.to 203 cm).

Dated fossils are near the beginning of the zone in core BR92 (BR91 did not

penetrate all of zone BR4). Dating the top of zone BR4 is more subjective. In core

BR92, the 173 cm depth is about 10,040 14C yr B.P. with our age model. However, in

core BR91, the top of zone BR4 at 203 cm depth is among three dates ranging from

9945 to 10,190 14C yr B.P. (Table 1). We approximate the end of zone BR4 at 10,050

14C yr B.P.

The dominance of Tsuga pollen (from 23 to 62% in BR92, 21 to 56% in BR91),

distinct increases in Betula (reaching a maximum of 9.5% in BR92 and 20% in BR91)

and Pinus haploxylon-type pollen, and a unique maximum in Sphagnum spores,

characterize this zone. Decreases in percentages of Picea, Quercus, Cyperaceae and

Tubuliflorae pollen accompany the Tsuga rise. Cyperaceae, Abies and

Ostrya/Carpinus pollen become rare. Total pollen influx is 2300 to 7200 grains cm -2

yr -1. The influx of Tsuga, Betula and Pinus haploxylon-type pollen increases,

Quercus does not. Pollen from the aquatics, Typha/Sparganium, Nuphar, and

Sagittaria, decreases from the zone BR3c values.

Tsuga and Picea macrofossils are numerous, often exceeding 10 needle

fragments each per 1 ml of sediment in core BR91. Two species of hemlock are

recognized in eastern North America, Tsuga canadensis is the most dispersed and T.

caroliniana is confined to the Appalachians from Virginia to Georgia (Godman and

Lancaster, 1990; Gleason and Cronquist, 1991). The three Tsuga seed-bearing

(megasporangiate) cones from this zone, in length and scale shape, are more similar

to Tsuga canadensis. One entire Picea pollen-bearing (microsporangiate) cone and

several pollen-bearing cone fragments occur in this zone (we could not identify the
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species). A few Pinus strobus needles and one Larix seed were found. Betula seeds

and bracts are most abundant in this zone. Many of the Betula achenes are missing

the wings and stigmas and thus species identification is difficult. Those Betula seeds

which are finely pubescent just below the stigma were classified as Betula papyrifera-

type (Cunningham, 1957). However the pubescent characteristic may not be unique

to Betula papyrifera (Radford et al., 1968; Fernald, 1970; Gleason and Cronquist, 1991)

Seeds of Sambucus canadensis, a swamp shrub, and a single seed of the shade-

tolerant shrub, Taxus canadensis, were identified. Decreases in Nuphar pollen, and

the absence of Nymphaeaceae and Nuphar seeds, indicate water levels have

dropped. Charcoal concentration in core BR91 varies between 0 and 3.6 mm 3 per ml

of sediment.

A temperature increase is inferred from the Tsuga increase and Abies

decrease in both pollen and macrofossils. Throughout the Appalachians today,

Tsuga is found at lower elevations than Abies. Picea's presense is consistent with

warming temperatures if the species is P. rubens; this species is presently found with

Tsuga and P. strobus in the central Appalachians (Eyre, 1980 p. 26-27). Tsuga is a

long-lived (from 300 to 800 years), very shade-tolerant tree that prefers a cool, humid

climate (Rogers, 1978; Godman and Lancaster, 1990). P. strobus is tolerant of drier

conditions, although the two trees may grow on more mesic sites or hummocks in

wooded swamps (Jorgensen, 1978 p. 276; Powell, 1980).

Zone BR5: Nyssa-Tsuga-Quercus zone (10,050 to 8410 14C yr B.P.;

approximately 10,940 to approximately 9400 cal yr B.P.; BR92, 173 to 134 cm; BR91,

203 to <143 cm). Within this zone Quercus replaces Tsuga as the dominant pollen

taxon. A series of changes occurs in tree-taxa pollen in core BR92: Nyssa rises from

2.3% at 173 cm to a high of 10.5% at 145 ¢m, at 152 ¢rn Picea drops below 1% and

Abies below 0.5%, Diospyros appears at 148 cm. Of all the taxa represented in the

pollen diagrams, Diospyros unambiguously has the most southerly distribution,
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occurring below 41°N latitude and south to peninsular Florida (Halls, 1990). The

same pollen sequenceoccurs in core BR91 although the percentages differ. Total

influx ranges from 5000 to 1800 grains cm -2 yr -1 at the end of this zone, Quercus

influx increases gradually from 430 to 2100 grains cm -2 yr -1.

Macrofossils are nearly absent and the sediment is very inorganic. In BR92, a

single Cornus canadensis seed was identified at 172 cm. In BR91, Compositae,

Glyceria striata-type and Sparganium cf. americanum seeds were found. The

presense of Typha/Sparganium and Polygonum lapathifolium type pollen, the

absense of Nuphar pollen at the top of the zone, along with significant amounts of

Nyssa pollen, all indicate the pond has been largely replaced by wet ground or

marshland. Charcoal concentrations are highest at the base of this zone. The

concentations in BR91 range from < 1 to 8 mm 3 per ml of sediment, in core BR92

the maximum concentration is 2.9 mm 3 per ml of sediment. Thus, a fire and

opening of the forest canopy are inferred. Increases in Pteridium and Polypodiaceae

spores support this interpretation.

Warming temperatures explain the increasing influx of Quercus, Nyssa and

Diospyros, and decreasing influx of Tsuga and Betula pollen. In zone BR5, the

influx of Quercus pollen increases gradually yet Nyssa and Diospyros exhibit rapid

increases. A similar pattern occurs in concentration (Kneller, 1996). Possibly the

local populations of Nyssa and Diospyros trees expanded more rapidly than

Quercus. Picea pollen percentages fluctuate greatly: a single peak of 25% occurs at

181.5 cm, in core BR92 there is much less fluctuation. The cause of the Picea

fluctuations is unclear. The continued presence of significant Tsuga pollen supports

the argument that climate is still as moist as modern conditions in the southern

low-elevation Appalachians.

Zone BR6: Quercus-Carya zone (8410 to <4870 14C yr B.P.; approximtely 9400

to 5600 cal yr B.P.; BR92, 134 to <65 cm). Carya pollen, which has been at roughly 1%
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during the preceding zones,now rises to 4.4%at 134cm and reachesa high of 11% at

72cm. Quercus pollen ranges from 40 to 71% while Tsuga pollen decreases from 31

to <5% by 97 cm. Total pollen influx ranges from 2700 to 7600 grains cm -2 yr -q.

Salix buds and one seed each of Crataegus and Rubus were identified. Aquatic

and low-ground plant seeds come from several Carex species, Polygonum cf.

punctatum, and at least three Potamogeton species. Characeae oogonia are present.

Charcoal concentration ranges from < 1 to 4.5 rnm 3 per ml of sediment.

Fluctuations in water quality and depth can explain the variations in aquatic

and wet ground taxa. The pollen of swamp-ground taxa, Ilex and Cephalanthus

occidentalis, occur throughout the zone. Their percentages decrease slightly as

Nuphar pollen returns above 100 cm depth, which indicates an increase in water

levels.

At 7500 14C yr B.P., a brief return to a colder, still moist climate is inferred

from the resurgance in Tsuga (16%), Picea (4.5%) and Abies (1.0%). The increases

(from a single sample at 103 cm depth) are noticable in the concentration diagram

and just perceptible in influx. The fact that three cold-tolerant taxa exhibit

synchronous increases in pollen percentage, concentration and influx point to a

short reversal to colder temperatures. However, since this conclusion depends on a

single sample, other sites must be found in order to substantiate the local and

regional significance of the cold reversal.

Water-level Fluctuations

Previously we inferred water-level fluctuations in Browns Pond based upon

changes in aquatic plants and the lithostratigraphy; we proposed that the lowest lake

levels occurred from 10,000 to 8000 14C yr B.P. (Kneller and Peteet, 1993). An

inorganic sand-clay layer with slower sediment accumulation rates and a decrease in

aquatic pollen percentages was identified from 176 to 130 cm depth in the

previously-studied central core, BR89. This inorganic layer occurred in five
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additional cores taken in a transect acrossthe pond. We hypothesized that a

lowering in water-level depth, driven by climate, had created this relatively

inorganic layer dating to the early Holocene.

The new analysis of coresBR92 and BR91 substantiates the earlier conclusion

that the pond's water levels were lowest during the early Holocene. Based on the

lithostratigraphy and organic content measurements, the inorganic clay layer is

between 210 and 164cm depth in core BR91,and 186and 140cm depth in BR92

(Kneller, 1996). In these cores, the period of low organic content and slowest

accumulation rates occurs between approximately 10,000and 850014Cyr B.P. During

this time aquatics, perhaps best exemplified by Nuphar, are at their lowest

percentages. However, the trees represented in the pollen assemblage require moist

conditions. Today, Tsuga grows in regions where annual precipitation ranges from

<740 to 1270 mm. (Godman and Lancaster, 1990). Nyssa and Diospyros, which co-

occur in the pollen assemblage with Tsuga from 10,000 to 7500 14C yr B.P., presently

grow where annual average precipitation is at least 1000 mm and often exceeds 1200

mm (Halls, 1990; Johnson, 1990; Kossuth and Scheer, 1990; McGee, 1990; Outcalt,

1990). Apparently, annual average precipitation was approximately equal to present-

day values, even as the pond's water levels were lower than present.

The apparent lower water-level without a decrease in precipitation might be

explained by increased evaporation, increased drought frequency, infilling of the

pond, a changing depositional center over time--or some combination of climate

and non-climatic factors. Determining the cause of the water-level fluctuations is

difficult since the basinal depression is, and likely always was, irregular in shape (i.e.

not perfectly conical). Thus very likely, sediment and pollen have accumulated at

varying rates across the pond (Davis et al., 1984), and the location of the depositional

center and shoreline have shifted over time. For example, the beginning of the

Alnus-Picea-Pinus zone occurs at 445 cm depth (14,100 14C yr B.P.) in BR92, yet at 337
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cm depth (14,09014Cyr B.P.) in core BR89. Thus at 14,00014Cyr B.P.,core BR92was

in the deeper section of the pond. Total pollen influx also differs between cores

BR92 and BR89. The differences could be causedby depositional or post-

depositional (e.g. erosional or oxidational) processes(Donner et al., 1978; Davis et al.,

1984). Evidence for changes in water quality also comes from Sphagnum and

Characeae, which occur in acidic and basic conditions respectively. In cores BR89

and BR92, Characeae oogonia were identified from the bottom of the cores up to

approximately 12,730 14C yr B.P., when Sphagnum leaves or spores occur. At

approximately 8000 14C yr B.P., Sphagnum disappears and Characeae oogonia re-

appear. A complete gridded transect of the pond is necessary to determine

conclusively which inferred changes in water-level represent a basin-wide drop in

water-level.

DISCUSSION

Questions remain about this record of late-glacial/early Holocene vegetation.

First, if the Picea species present at anytime at Browns Pond is P. glauca or P.

mariana and not P. rubens, would this substantially change the climatological

interpretations? In Pennsylvania, Watts (1979) tentatively identified pollen from all

three spruce species in late-glacial sediments. However, for the reasons stated by H.

Delcourt (1979), we were unable to definitively identify the species of our spruce

pollen and macrofossils. Each species has different climatological and ecological

affinities. Definitive identification of the species would aid in the environmental

reconstruction. Second, how accurate is the qualitative climate interpretation based

on analogy with the montane forests of the Appalachian Mountains? Quantitative

climate reconstructions could be made by statistically comparing each fossil pollen

spectrum with modem pollen surface samples obtained from throughout North

America. However, several issues must be resolved before proceeding with the
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statistical comparisons. The fossil pollen spectra recorded in each of the three

radiocarbon dated cores (BR89,BR91and BR92)agree qualitatively, but not

quantitatively, with each other. For example, in the late-glacial sediments, the ratio

of Picea to Pinus, or Picea to Alnus, varies between cores BR89 and BR92 (see

description of the pollen zones). Distance of each core to the shoreline might

partially explain the different percentages recorded. Additional modern pollen

surface samples from the Appalachians are needed in order to capture the full range

of plant associations recognized in the modern phytogeographic studies.

The sequence of temperature fluctuations interpreted at this central

Appalachians site shows striking similiarities and dissimilarities to the sequence of

events in other pollen stratigraphies and polar ice cores from the North Atlantic

region. We interpret temperatures cooler than present from 14,180 to 10,000 14C yr

B.P.

The step towards warming at 12,730 14C yr B.P. seen at Browns Pond probably

represents a change over much of the U.S. southeast since sites in Tennessee

(Delcourt, 1979), South Carolina (Watts, 1980), and Florida (Watts and Hansen, 1994)

show increases in temperate pollen taxa (Quercus, Carya, Fagus, Fraxinus and

Ostrya/Carpinus) dating between 12,800 and 12,500 14C yr B.P. This warming is

contemporary with warmings seen in pollen records from the U.S. northeast (Peteet

et al., 1993; Peteet et al., 1994; Maenza-Gmelch, 1997b; Maenza-Gmelch, 1997a). Thus

the warming may have been synchronous from roughly 29 ° to 41°N latitude along

the eastern margin of North America. It should be substantiated by evaluating

additional sites especially since a radiocarbon plateau of constant 14C age occurs at

this time (Ammann and Lotter, 1989; Kitagawa and van der Plicht, 1998). The North

American warming may also coincide with the onset of warming inferred from

pollen records in northern and western Europe (Bj6rck and M611er, 1987; Ammann

and Lotter, 1989; Watts et al., 1996) and the abrupt rise in delta 180 (Johnsen et aI.,
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1992;Bj6rck et al., 1998) and snow accumulation-rates (Alley et al., 1993) in the

Greenland ice cores.

The Browns Pond record shows cold reversals at 12,200 and 7500 _4C yr B.P.,

superimposed upon the overall warming trend. The first reversal (centered at about

14,280 cal yr B.P.) may correlate to the European Older Dryas chronozone which

Mangerud (1974) constrained between 12,000 and 11,800 14C yr B.P. Subsequent

palynology in Sweden revised the dating of the Older Dryas chronozone to between

12,150 and 12,000 14C yr B.P. (Bj6rck, 1984; Bj6rck and M611er, 1987). The second cold

reversal dates to 7500 _4C yr B.P. (between 8200 and 8300 cal yr B.P.). It coincides with

CH4 minimums in the GRIP and GISP2 ice cores, and the most noticeable Holocene

decrease in delta 18Oi¢ e (Chappellaz et al., 1993; Sowers and Bender, 1995; Alley et al.,

1997). It also coincides with an ice-rafting event in the North Atlantic Ocean linked

to changes in surface circulation (Bond et al., 1997), and a 200-year cooling inferred

from oxygen isotopes in lake Ammersee, Germany (yon Grafenstein et al., 1998).

The cold reversals at this site in the central Appalachians may be concurrent with

cold events in the northern high latitudes and shifts in trade-wind strength in the

tropical Atlantic Ocean (Hughen et al., 1996; Bj6rck et al., 1998). However, the

inherent errors in radiocarbon dating, and the samples' statistical errors, leave room

for uncertainty.

The shift to relatively warmer climate at 11,350 14C yr B.P. is significant for it

may show the southern limit of cooling on the eastern margin of North America,

contemporaneous with the Younger Dryas chronozone. The late-glacial rise in

hemlock and decrease in fir pollen, which indicates warming at Browns Pond, is

also apparent at two sites just to the north (Buckles Bog, 39°34'N 79°16'W (Maxwell

and Davis, 1972) and Big Run Bog, 39°07'N, 70°35'W (Larabee, 1986)) although the

timing is less well constrained. Other records in the U.S. southeast do not clearly

show a cooling at this time. Only at Jackson Pond, Kentucky, have Picea
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fluctuations from 11,300and 10,04014Cyr B.P. been hypothesized to represent a

Younger Dryas climate oscillation (Wilkins et al., 1991).

Increasing warmth and moisture at 11,300 14C yr B.P. in the central

Appalachians can be consistent with a cold reversal in the northern North Atlantic

region. If a steep temperature gradient exists between cold sub-polar waters and

warmer subtropical waters, then storm-track associated moisture will be

concentrated along the maximum thermal gradient. GCM climate simulations

support this hypothesis--when northern North Atlantic sea surface temperatures

were cooled, a net increase in precipitation minus evaporation occured at the

southern edge of strong temperature contrast (Rind et al., 1986; Keffer et al., 1988).

The global extent of a cold reversal contemporaneous with the Younger Dryas

chronozone, from 11,000 to 10,000 _4C yr B.P., and its causes is still in debate (Peteet,

1995).

Ideally other unglaciated east coast sites, with high-resolution chronologies,

are needed both to confirm the timing, and to define the regionality of the brief cold

reversals seen here in the central Appalachians. The diversity of vegetation, and

close proximity of ecotonal boundaries in this region, permits a rapid response of

the vegetation to changing climate. The great similarity in the timing of climate

events seen in this terrestrial mid-latitude vegetation record, when compared to

polar ice core and northern european pollen records, suggests a strong coupling of

the atmosphere-ocean climate system.
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TABLE 1

Radiocarbon and calibrated years for dated samples, cores BR91 and BR92

Lab Sample Sample Material Dated Dry 14C years Calibrated

number depth (cm) Weight (yr B.P.) years*

(m 8)

NSF BR92 1 Carex lupulina seed 2.65 7500 + 60 8310,8220,8218

Arizona 100 2 C. crinata seeds (8339-8171)

AA 17723 2 conifer cone scales

4 Salix buds

Lawrence BR92

Livermore 152.0 sediment 4100 8890 _+60 9906

17319 (9969-9870)

17322 BR92 4 Picea needle bases 2.37 11280 + 60

194.8-196.4 2 Picea needle tips

4 needle fragments

1 Alnus cone scale (partial)

17323 BR92 3 Picea needle bases 2.75 12200 + 70

244.0-245.6 2 Picea needle tips

6 Picea sterigmata

4 needle fragments

5 Carix lurida seeds

13190

(13280-13110)

14240

(14406-14091)

17324 BR92 2 Picea needles 3.27 12230 + 70

259.8-261.4 2 Picea needle bases

3 Rubus seeds

nut fra_rnent

14278

(14446-14127)
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17325 BR92 1 Picea needle 3.78 12730 + 60

344.7-346.0 partial conifer needle

17 Picea sterigmata

conger cone bract

1/3 Rub-us seed

3 2/3 Carex lurida seed

1/2 Nymphaceae seed

Menyanthes fragment

BR92

17326 445.0 sediment 2300 14180 + 60

15001

(15173-14812)

170O4

(17115-16895)

BR91

AA 17724 199.0-200.0 8 Sparganium seeds 4.45 10050 + 75

AA 17725 BR91 23 Picea needle pieces 2.2 10190 + 75

207.0-208.0 2 Picea sterigmata

2 Tsuga stem fragments

10 Tsuga needle bases

AA 17726 BR91 18 Picea needle pieces 2.1 9945 _+105

222.0-223.0 38 Tsuga needle bases

2 Tsuga stem pieces

2 Sambucus seeds

11464...11225

(11828-11050)

11939

(12134-11659)

11073,11061,

11034

(11536-10996)

" The first number (or set of numbers) is the calibrated age. The numbers in the parantheses are the

range of the calibrated age, at the one sigma level. Sample AA 17724 has nine calibrated ages, only

the youngest and oldest are printed here.
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FIGURE LEGENDS

FIG. 1. Pollen percentage diagram from Core BR92. A minimum of 300 upland

tree, shrub or herbaceous pollen grains were counted; aquatics, unknowns

and indeterminables (Cushing, 1967) and pteridophytes were also tallied. The

total of tree, shrub and upland herb pollen is used to calculated their

percentages. Aquatics are calculated as a percentage of all pollen,

pteridophytes as a percentage of all pollen and spores. The stippled silhouette

represents a 5x exaggeration of the percentages. Radiocarbon dates are listed

in uncorrected years. Core lithology is described according to the Troels-

Smith classification as amended by Aaby and Berglund (1986). Organic

content was measured on samples of approximately 2 m] according to the

procedure in Dean (1974). The drive boundaries, indicated by the dashed

lines, are at 82, 174.5, (the top of this drive, from 174.5 to 186 cm, was lost due

to coring difficulties in the field) 263, 353.5, 443, 477 and 521 cm depth

(measured from the sediment-water interface).

FIG. 2. Plant macrofossils counted in core BR92, per interval, and normalized to to

a 1 ml sediment volume. Charcoal concentration is given in mm 3 per ml of

sediment. The actual volume of each sediment sample is graphed on the far

right in ml.

FIG. 3. Pollen percentage diagram from Core BR91, approximately 4 m west of

BR92. Pollen percentages are calculated as they were for core BR92. The drive

boundaries are at 87, 187 and 228 cm depth.

FIG. 4. Plant macrofossil and charcoal diagram from Core BR91. Fossils counts are

normalized to to a 1 ml sediment volume. Charcoal concentration is given

in mm 3 per ml of sediment.

FIG. 5. Pollen accumulation rate (PAR), or pollen influx, diagram for selected taxa

in core BR92. The age axis is based on the assumption of a constant
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accumulation rate between radiocarbon dates. Note that the horizontal axis

changes in scale for each pollen taxa. Units of PAR are in number of pollen

grains per cm 2 per year.
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